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Roadmap

Offline RL (CQL)
Offline-to-Online RL (CalQL)
Offline data + Online RL (RLPD)



tl:dr

WSRL = RLPD - Offline Data + Pretrained Policy Rollout

Method Buffer Initialization Technique

SimBa Random action rollout LayerNorm + Residual + RSNorm
RLPD Offline data RR4 + LayerNorm + REDQ
WSRL Pre-trained policy rollout RR4 + LayerNorm + REDQ

*REDQ = CDQ + 10 heads




Online RL

« Agent learns from transitions, which are made live by interacting with the environment.

Environment Buffer



Offline RL

« Agent learns from transitions, which are already made in a form of fixed dataset.
« via expert policies (from online RL),
e via teleoperation,

e etc.
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Offline RL

e Problem: Overestimation bias

« Can be easily fixed in online RL (e.g., Double-Q, CDQ).
e Impossible in offline RL because agent cannot interact with the environment.

« Solution: Conservative RL objective (CQL)
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[1] Conservative Q-Learning for Offline Reinforcement Learning., Kumar et al.



Offline-to-Online RL

« Offline RL = Training on (somewhat) large dataset = Pre-training

e Then, Fine-tuning = Domain-specific training = Online RL

e Online RL fine-tuning starts by filling the replay buffer with offline data.
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Offline-to-Online RL

« Pathology: Initial unlearning (performance drop) at the start of online RL
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Offline-to-Online RL

e Problem: Over-conservatism of Offline RL

e The learned values are too small and must

be ‘recalibrated’ to true Q values during Online RL.

* In the process, bad actions may appear optimal.
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Offline-to-Online RL

 Solution: Less conservatism (CalQL)

e Learn minimal Q-values, but not below a reasonable bound (e.g., V-value).
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Offline data + Online RL (Hybrid RL)

e Only online RL, but sample from both replay buffer and offline dataset.
e e.g., Training batch = 50% from online buffer + 50% from offline dataset (RLPD)

Environment Buffer Dataset




Offline data + Online RL (Hybrid RL)

« Offline dataset provides high quality samples in the early-stage.
« With some techniques, we can leverage this prior to achieve good performance fast.
1. Replay ratio 4, for sample efficiency (i.e., to learn fast).

2. LayerNorm, to mitigate overestimation.

3. REDQ, to mitigate overestimation.
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Summary (so far)

o Offline RL (CQL)

» Overestimation bias > Conservative objective function

« Off-to-On RL (CalQL)

« Over-conservative values = Calibrated objective function

« Hybrid RL (RLPD)
« RR4 + LayerNorm + REDQ



No Data Retention Off-to-On RL

» OfflineRL = Pre-training, OnlineRL = Fine-tuning

« What kind of fine-tuning keeps the pre-training dataset?!
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No Data Retention Off-to-On RL

e Problem: Off-to-on RL does not work without offline data.

e If this doesn’t work, what’s the point of pre-training even?
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Figure 2: In no-retention fine-tuning, IQL, CQL, and CalQL all fail to fine-tune on kitchen-partial. In contrast, when
continually training on offline data during fine-tuning, these algorithms work as intended. Vertical dotted line indicates the

separation between pre-training and fine-tuning.



No Data Retention Off-to-On RL

e Problem: Off-to-on RL does not work with offline data.

« Again, why pre-train when learning from scratch does way better?
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Figure 6: Retaining offline data is not efficient, and is outperformed by online RL methods like RLPD on three different
environments. RLPD starts from scratch, and CalQL starts from pre-trained initialization at step 0.



No Data Retention Off-to-On RL

« Goal: Make pretrain-then-finetune great again.
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Finding The Culprit

 In CalQL, the over-conservative values were suspected to be the issue of off-to-on RL.

« However, we saw that CalQL also fails to leverage pre-trained knowledge.

« An underlying problem: Data distribution shift between offline and online data

 This can explain both failures with and without offline data.



Distribution Shift - Without Offline Data

« Main observations
« TD Loss is stable for online data (d) but diverges for offline data (b,c).

e (1) Offline and online data distribution shift exists.

« (2) Catastrophic forgetting on offline data occurs (a devastation in sparse reward envs (a)).
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Figure 3: When offline data is removed (to different extents) during fine-tuning, performance drops (subfigure a) because
the Q-function fit on offline dataset distribution diverges (subfigure b, c), even though the Q-function can fit the online distribution
(subfigure d). This plot shows fine-tuning CalQL on kitchen-partial with 0/5/10/25% offline data in each update batch. We
have similar findings with IQL and CQL.



Distribution Shift - With Offline Data

e (Personal interpretation) In off-to-on, we need to forget some pre-trained knowledge.
» Take Antmaze for example, where only a portion of offline data becomes relevant in online RL.

« Although less severely, these irrelevant data will still hold the agent from learning fast.
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Warm Start RL (WSRL)

 So far:
« Offline data is required to prevent unlearning and catastrophic forgetting.

 But offline data has irrelevant samples, which hurt performance.

 Solution: Create relevant samples using the pre-trained policy!
« Will mitigate catastrophic forgetting (because they are created by the pre-trained policy).

« Will create relevant samples (because they are created in the fine-tuning environment).

Offline Pre-trained Online data
data policy rollout (Online policy rollout)
e ——————————————————————



Warm Start RL (WSRL)

« Method

1. Pre-train with any offline RL algorithm (e.g., CalQL)

2. Initialize the replay buffer by rollouts of pre-trained (frozen) policy.

3. Fine-tune the pre-trained policy with any online RL algorithm (e.g., RLPD)
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L
Result

« No data retention finally works
(RLPD w/o offline data)

=== \WSRL (Ours) —— CQL —=— IQL —=— CalQL —=— SAC (fast) —=— JSRLI
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Figure 7: In no-retention fine-tuning, WSRL fine-tunes efficiently and greatly outperforms all previous algorithms, which often
fail to recover from an initial dip in performance. JSRL, the closest baseline, uses a data-collection technique similar to warmup.



L
Result

« Even outperforms data retention algorithms!
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Figure 9: Compared to methods that do retain offline data online, WSRL, perhaps surprisingly, is still able to fine-tune faster or
competitively despite not retaining any offline data. This in particular highlights benefits of warmup.



L
Comparison With JSRL

« Ablation on whether to load the pre-trained parameters on actor, critic, or both.

« Unsurprisingly, both are crucial.

Antmaze Kitchen Adroit

o
©

—e— W)/o Q initialization
—e— W/ Q initialization

o
o

Normalized Score
=) =}
N =Y

/i

0.0

0 50k 100k 150k 200k 0 50k 100k 150k 200k 0 50k 100k 150k 200k

Steps Steps Steps
kitchen-mixed-v0 kitchen-partial-v0
1o Policy Initialization
—a— False

gU.B —e— True
@
o 0.6
N
= 04
E
S
= 0.2

0.0-

0 100k 200k 300k 0 100k 200k 300k
Steps Steps




Comparison With JSRL

e Jump Start RL (JSRL)
 Quite similar to WSRL, except that the agent is learned from scratch...

e So... what if we initialize the agent with pre-trained model?
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Comparison With JSRL

. ...well that’s a weird comparison.

they can definitely be applied or repurposed to our setting. JSRL [51] uses a pre-trained policy to roll in
for some number of steps during each episode and then rolls out with the current policy. The online policy
is trained from scratch with both the roll-in and rollout experience. To improve JSRL’s competitiveness, we
also initialize the online policy with the pre-trained policy and run it with high UTD. Offline RL methods

== WSRL (Ours) —— CQL —— IQL —=— CalQL —=— SAC (fast) —— JSRLJ
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Figure 7: In no-retention fine-tuning, WSRL fine-tunes efficiently and greatly outperforms all previous algorithms, which often
fail to recover from an initial dip in performance. JSRL, the closest baseline, uses a data-collection technique similar to warmup.



Summary

1. Offline data should NOT be retained during online RL, as it loses the meaning of pre-training.
2. One major issue of off-to-on RL is the distribution shift between offline and online data.

3. WSRL: Get middle-ground samples (between off and on) by rolling out pre-trained policy.
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